Article ID Journal Published Year Pages File Type
2791188 Zoology 2008 14 Pages PDF
Abstract

The great barracuda, Sphyraena barracuda, is a voracious marine predator that captures fish with a swift ram feeding strike. While aspects of its ram feeding kinematics have been examined, an unexamined aspect of their feeding strategy is the bite mechanism used to process prey. Barracuda can attack fish larger than the gape of their jaws, and in order to swallow large prey, can sever their prey into pieces with powerful jaws replete with sharp cutting teeth. Our study examines the functional morphology and biomechanics of ‘ram-biting’ behavior in great barracuda where the posterior portions of the oral jaws are used to slice through prey. Using fresh fish and preserved museum specimens, we examined the jaw mechanism of an ontogenetic series of barracuda ranging from 20 g to 8.2 kg. Jaw functional morphology was described from dissections of fresh specimens and bite mechanics were determined from jaw morphometrics using the software MandibLever (v3.2). High-speed video of barracuda biting (1500 frames s−1) revealed that prey are impacted at the corner of the mouth during capture in an orthogonal position where rapid repeated bites and short lateral headshakes result in cutting the prey in two. Predicted dynamic force output of the lower jaw nearly doubles from the tip to the corner of the mouth reaching as high as 58 N in large individuals. A robust palatine bone embedded with large dagger-like teeth opposes the mandible at the rear of the jaws providing for a scissor-like bite capable of shearing through the flesh and bone of its prey.

Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
, , ,