Article ID Journal Published Year Pages File Type
2791314 Zoology 2009 26 Pages PDF
Abstract

In order to gain a better understanding of the ancestral properties of the perivertebral muscles of mammals, this study investigated the fiber type composition of these muscles in six small, extant therians (two metatherians and four eutherians) similar in body shape to early mammals. Despite a few species-specific differences, the investigated species were very similar in their overall distribution of fiber types indicating similar functional demands on the back muscles in mammals of this body size and shape. Deep and short, mono- or multisegmental muscles (i.e., mm. interspinales, intermammillares, rotatores et intertransversarii) consistently showed the highest percentage of slow, oxidative fibers implying a function as local stabilizers of the vertebral column. Superficial and large, polysegmental muscles (i.e., mm. multifidus, sacrospinalis, iliopsoas et psoas minor) were predominantly composed of fast, glycolytic fibers suggesting they function to both globally stabilize and mobilize the spine during rapid non-locomotor and locomotor activities. Some muscles contained striking accumulations of oxidative fibers in specific regions (mm. longissimus et quadratus lumborum). These regions are hypothesized to function independently from the rest of the muscle belly and may be comparable in their functionality to regionalized limb muscles. The deep, central oxidative region in the m. longissimus lumborum appears to be a general feature of mammals and likely serves a proprioceptive function to control the postural equilibrium of the pelvic girdle and lumbar spine. The potential functions of the m. quadratus lumborum during ventilation and ventral stabilization of the vertebral column are discussed. Because representatives of the stem lineage of mammals were comparable in their body proportions and probably also locomotor parameters to the species investigated here, I suggest that the described fiber type distribution is representative of the ancestral condition in mammals. The origin of mammals was associated with a substantial enlargement of the epaxial muscles and the addition of subvertebral muscle mass. Because this novel muscle mass is mainly composed of fast, glycolytic fibers in extant species, it is plausible that these changes were associated with the evolution of increased sagittal mobility in the posterior trunk region in the therapsid ancestors of mammals. The caudally increasing role of sagittal bending in body propulsion is consistent with the overall increase in the percentage of glycolytic fibers in the cranio-caudal direction. The evolution of mammals was also associated with a loss of ribs in the posterior region of the trunk. This loss of ribs is thought to have decreased the stability of the posterior trunk, which may explain the observed greater oxidative capacity of the caudal local stabilizers. The increased need for postural feedback in the more mobile lumbar region may also explain the evolution of the proprioceptive system in the m. longissimus lumborum. Furthermore, the anatomical subdivision of the transversospinal muscle into several smaller muscle entities is suggested to facilitate their functional specialization.

Keywords
Related Topics
Life Sciences Agricultural and Biological Sciences Animal Science and Zoology
Authors
,