Article ID Journal Published Year Pages File Type
2823442 Infection, Genetics and Evolution 2008 5 Pages PDF
Abstract

The previous study of the evolutionary rates of European bat lyssavirus type 1 (EBLV-1) used a strict molecular clock to estimate substitution rates of the nucleoprotein gene and in turn times of the most recent common ancestor (tMRCA) of the entire genotype and the two major EBLV-1 lineages (EBLV-1A and EBLV-1B). The results of that study suggested that the evolutionary rate of EBLV-1 was one of the lowest recorded for RNA viruses and that genetic diversity of EBLV-1 arose 500–750 years ago. Here I have shown that the use of a relaxed molecular clock (allowing branch rates to vary within a phylogeny) shows that these previous estimates should be revised. The relaxed clock provides a significantly better fit to all datasets. The substitution rate of EBLV-1B is compatible to that expected given previous estimates for the N gene of rabies virus whilst rate estimations for EBLV-1A appear to be confounded by substantial rate variation within the phylogeny. The relaxed clock substitution rate for EBLV-1 (1.1 × 10−4) is higher than had been estimated previously, and closer to that expected for the N gene. Moreover, tMRCA estimates for EBLV-1 are substantially reduced using the relaxed molecular clock (70–300 years) although the differing dynamics of EBLV-1A and EBLV-1B confound the confidence in this estimate. Current diversity of both EBLV-1A and EBLV-1B appears to have emerged within the last 100 years. Reconstruction of the population histories suggests that EBLV-1B may be emerging whilst the signal derived from the EBLV-1A phylogeny may be dampened by clade-specific dynamics.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
,