Article ID Journal Published Year Pages File Type
2823727 Infection, Genetics and Evolution 2006 10 Pages PDF
Abstract

The alpha-globin genes are implicated in human resistance to malaria, a disease caused by Plasmodium parasites. This study is the first to analyze DNA sequences from a novel alpha-globin-type gene in orangutans, a species affected by Plasmodium. Phylogenetic methods show that the gene is a duplication of an alpha-globin gene and is located 5′ of alpha-2 globin. The alpha-globin-type gene is notable for having four amino acid replacements relative to the orangutan's alpha-1 and alpha-2 globin genes, with no synonymous differences. Pairwise Ka/Ks methods and likelihood ratio tests (LRTs) revealed that the evolutionary history of the alpha-globin-type gene has been marked by either neutral or positive evolution, but not purifying selection. A comparative analysis of the amino acid replacements of the alpha-globin-type gene with human hemoglobinopathies and hemoglobin structure showed that two of the four replaced sites are members of the same molecular bond, one that is crucial to the proper functioning of the hemoglobin molecule. This suggested an adaptive evolutionary change. Functionally, this locus may result in a thalassemia-like phenotype in orangutans, possibly as an adaptation to combat Plasmodium.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , , ,