Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2826951 | Trends in Plant Science | 2007 | 8 Pages |
H2O is one of the most essential molecules for cellular life. Cell volume, osmolality and hydrostatic pressure are tightly controlled by multiple signaling cascades and they drive crucial cellular functions ranging from exocytosis and growth to apoptosis. Ion fluxes and cell shape restructuring induce asymmetries in osmotic potential across the plasma membrane and lead to localized hydrodynamic flow. Cells have evolved fascinating strategies to harness the potential of hydrodynamic flow to perform crucial functions. Plants exploit hydrodynamics to drive processes including gas exchange, leaf positioning, nutrient acquisition and growth. This paradigm is extended by recent work that reveals an important role for hydrodynamics in pollen tube growth.