Article ID Journal Published Year Pages File Type
2835088 Molecular Phylogenetics and Evolution 2008 18 Pages PDF
Abstract

Phylogenetic reconstructions may be hampered by multiple substitutions in nucleotide positions obliterating signal, a phenomenon called saturation. Traditionally, plotting ti/tv ratios against genetic distances has been used to reveal saturation by assessing when ti/tv stabilizes at 1. However, interpretation of results and assessment of comparability between different data sets or partitions are rather subjective. Herein, we present the new C factor, which quantifies convergence of ti/tv ratios, thus allowing comparability. Furthermore, we introduce a comparative value for homoplasy, the O/E ratio, based on alterations of tree length. Simulation studies and an empirical example, based on annelid rRNA-gene sequences, show that the C factor correlates with noise, tree length and genetic distance and therefore is a proxy for saturation. The O/E ratio correlates with the C factor, which does not provide an intrinsic threshold of exclusion, and thus both together can objectively guide decisions to exclude saturated nucleotide positions. However, analyses also showed that, for reconstructing annelid phylogeny using Maximum Likelihood, an increase in numbers of positions improves tree reconstruction more than does the exclusion of saturated positions.

Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , ,