Article ID Journal Published Year Pages File Type
2835887 Molecular Phylogenetics and Evolution 2007 8 Pages PDF
Abstract
Previous molecular phylogenetic analyses of forcipulatacean sea stars (Echinodermata: Asteroidea) have reconstructed a non-monophyletic order Forcipulatida, provided that two or more forcipulate families are included. This result could mean that one or more assumptions of the reconstruction method was violated, or else the traditional classification could be erroneous. The present molecular phylogenetic analysis included 12 non-forcipulatacean and 39 forcipulatacean sea stars, with multiple representatives of all but one of the forcipulate families and/or subfamilies. Bayesian analysis of approximately 4.2 kb of sequence data representing seven partitions (nuclear 18S rRNA and 28S rRNA, mitochondrial 12S rRNA, 16S rRNA, 5 tRNAs and cytochrome oxidase I with first and second codon positions analyzed separately from third codon positions) recovered a consensus tree with three well-supported clades (78%-100% bootstrap support) that corresponded at least approximately to traditional taxonomic ranks: the superorder Forcipulatacea (Forcipulatida + Brisingida) + Pteraster, the Brisingida/Brisingidae and Asteriidae + Rathbunaster + Pycnopodia. When a molecular clock was enforced, the partitioned Bayesian analysis recovered the traditional Forcipulatacea. Five of six genera represented by two or more species were monophyletic with 100% bootstrap support. Most of the traditional subfamilial and familial groupings within the Forcipulatida were either unresolved or non-monophyletic. The separate partitions differed considerably in estimates of model parameters, mainly between nuclear sequences (with high GC content, low rates of sequence substitution and high transition/transversion rate ratios) and mitochondrial sequences.
Related Topics
Life Sciences Agricultural and Biological Sciences Ecology, Evolution, Behavior and Systematics
Authors
, , , , ,