Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2841239 | Journal of Insect Physiology | 2008 | 5 Pages |
Cricket ears are sensitive to ultrasound as well as to lower, cricket-like sound frequencies. Ultrasound stimuli evoke negative phonotaxis in flying crickets, a behavior that has been interpreted as a defensive response against predation by echolocating bats. A recent study on a wing-dimorphic species, Gryllus texensis, showed that short-winged individuals, which are incapable of flight, are less sensitive to ultrasound, but not to lower sound frequencies, than their long-winged counterparts. The developmental decision to develop as a long- or short-winged individual is made during the last two larval instars, and there is some evidence suggesting that juvenile hormone (JH) has an instructive role, such that high levels of JH result in short-winged individuals. We show that treatment of last-instar larvae of a monomorphic long-winged species, Teleogryllus oceanicus, with a JH analog causes a decrease in sensitivity to ultrasound, but not to the lower sound frequency used for intraspecific communication.