Article ID Journal Published Year Pages File Type
2843079 Journal of Thermal Biology 2012 6 Pages PDF
Abstract

The Pennes bio-heat transfer equation, which introduces the exchange magnitude of heat transfer between tissue and blood, is often used to solve the temperature distribution for thermal imaging and sensing. Near-infrared light has the ability to be used as a non-invasive means of diagnostic imaging within the woman's breast. Due to the diffusive nature of light in different tissue, computational model-based methods are required for functional imaging within the breast. In this article, the time-dependent bio-heat transfer is solved by a numerical method. In our model, the heat generation source (intrinsic and extrinsic) involves laser, metabolism, and quantum dot that the metabolism and heat generated by QDs are considered as intrinsic. We supposed the injected quantum dots would target the tumor site by a passive targeting process and then by interaction of laser radiation and quantum dot, the photoluminescence of quantum dot is converted to heat in the tumor site. The extra generated heat can impact on the extracted heat profile. One of the important applications of this research has led to a sensitivity improvement of the imaging system, which is potentially useful in the diagnosis and detection of breast cancer.

Graphical AbstractThe present article is one of the conclusions of research projects entitled: “The tune thermal detection of CANCER tumor site by Nanoparticles”, that my groups have done it. In this project, we elucidate the influence of the quantum-dot effect as internal source in the tumor site. The Pennes bio-heat transfer equation, which introduces the exchange magnitude of heat transfer between tissue and blood, is often used to solve the temperature distribution for thermal imaging and sensing. Near-infrared light has the ability to be used as a non-invasive means of diagnostic imaging within the woman's breast. Due to the diffusive nature of light in different tissue, computational model-based methods are required for functional imaging within the breast. In this article, the time-dependent bio-heat transfer is solved by a numerical method. In our model, the heat generation source (intrinsic and extrinsic) involves laser, metabolism, and quantum dot that the metabolism and heat generated by QDs are considered as intrinsic. We supposed the injected quantum dots would target the tumor site by a passive targeting process and then by interaction of laser radiation and quantum dot, the photoluminescence of quantum dot is converted to heat in the tumor site. The extra generated heat can impact on the extracted heat profile. One of the important applications of this research has led to a sensitivity improvement of the imaging system, which is potentially useful in the diagnosis and detection of breast cancer.Figure optionsDownload full-size imageDownload as PowerPoint slideHighlights► The use of QDs as internal source in the Bio-heat equation. ► The probe and investigation of QDs as internal source and its advantage toward the external source. ► The use of finite element method to coupling of QD and heat equation.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, , , ,