Article ID Journal Published Year Pages File Type
2843342 Journal of Thermal Biology 2011 8 Pages PDF
Abstract

Improved winter cold tolerance is widespread among small birds overwintering in cold climates and is associated with improved shivering endurance and elevated summit metabolic rate (Msum). Phenotypic flexibility resulting in elevated Msum could result from either increased skeletal muscle mass (perhaps with support from similar adjustments in “nutritional organs”) and/or cellular metabolic intensity. We investigated seasonal changes in body composition of three species of passerine birds resident in cold winter climates, all of which show large seasonal variations in Msum (>25%); white-breasted nuthatch (Sitta carolinensis), black-capped chickadee (Poecile atricapillus), and house sparrow (Passer domesticus). All three species displayed significant winter increases in pectoralis and heart masses, and supracoracoideus mass also increased in winter chickadees. Gizzard mass increased in winter for all three species, but masses of other nutritional organs did not vary consistently with season. These data suggest that winter increases in pectoralis and heart masses are important contributors to elevated thermogenic capacity and cold tolerance, but seasonal variation in nutritional organ masses, other than gizzard, which is likely associated with dietary changes, are not universally associated with seasonal phenotypes. The winter increases in pectoralis and heart masses are consistent with data from other small passerines showing marked seasonal changes in cold tolerance and support the Variable Maximum Model of seasonal phenotypic flexibility, where physiological adjustments that promote improved cold tolerance, also result in elevated Msum.

► We examine seasonal changes in muscle and organ masses in three small birds. ► Consistent winter increases occurred in masses of pectoralis muscle and heart. ► Seasonal changes in nutritional organ masses were not consistent among species. ► Winter increases of muscle and heart masses support higher thermogenic capacity.

Related Topics
Life Sciences Agricultural and Biological Sciences Agricultural and Biological Sciences (General)
Authors
, ,