Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
389079 | Fuzzy Sets and Systems | 2016 | 15 Pages |
Abstract
We analyze directional monotonicity of several mixture functions in the direction (1,1…,1)(1,1…,1), called weak monotonicity. Our particular focus is on power weighting functions and the special cases of Lehmer and Gini means. We establish limits on the number of arguments of these means for which they are weakly monotone. These bounds significantly improve the earlier results and hence increase the range of applicability of Gini and Lehmer means. We also discuss the case of affine weighting functions and find the smallest constant which ensures weak monotonicity of such mixture functions.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Gleb Beliakov, Jana Špirková,