Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
391488 | Information Sciences | 2016 | 13 Pages |
Abstract
Clustering analysis can facilitate the extraction of implicit patterns in a dataset and elicit its natural groupings without requiring prior classification information. For superior clustering analysis results, a number of distance measures have been proposed. Recently, geodesic distance has been widely applied to clustering algorithms for nonlinear groupings. However, geodesic distance is sensitive to noise and hence, geodesic distance-based clustering may fail to discover nonlinear clusters in the region of the noise. In this study, we propose a density-based geodesic distance that can identify clusters in nonlinear and noisy situations. Experiments on various simulation and benchmark datasets are conducted to examine the properties of the proposed geodesic distance and to compare its performance with that of existing distance measures. The experimental results confirm that a clustering algorithm with the proposed distance measure demonstrated superior performance compared to the competitors; this was especially true when the cluster structures in the data were inherently noisy and nonlinearly patterned.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Yu Jaehong, Seoung Bum Kim,