Article ID Journal Published Year Pages File Type
406063 Neurocomputing 2015 18 Pages PDF
Abstract

In this paper, experiments concerning the prediction of water and natural gas consumption are presented, focusing on how to exploit data heterogeneity to get a reliable outcome. Prior to this, an up-to-date state-of-the-art review on the available datasets and forecasting techniques of water and natural gas consumption, is conducted. A collection of techniques (Artificial Neural Networks, Deep Belief Networks, Echo State Networks, Support Vector Regression, Genetic Programming and Extended Kalman Filter-Genetic Programming), partially selected from the state-of-the-art ones, are evaluated using the few publicly available datasets. The tests are performed according to two key aspects: homogeneous evaluation criteria and application of heterogeneous data. Experiments with heterogeneous data obtained combining multiple types of resources (water, gas, energy and temperature), aimed to short-term prediction, have been possible using the Almanac of Minutely Power dataset (AMPds). On the contrary, the Energy Information Administration (E.I.A.) data are used for long-term prediction combining gas and temperature information. At the end, the selected approaches have been evaluated using the sole Tehran water consumption for long-term forecasts (thanks to the full availability of the dataset). The AMPds and E.I.A. natural gas results show a correlation with temperature, that produce a performance improvement. The ANN and SVR approaches achieved good performance for both long/short-term predictions, while the EKF-GP showed good outcomes with the E.I.A. datasets. Finally, it is the authors׳ purpose to create a valid starting point for future works that aim to develop innovative forecasting approaches, providing a fair comparison among different computational intelligence and machine learning techniques.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,