Article ID Journal Published Year Pages File Type
406436 Neurocomputing 2015 11 Pages PDF
Abstract

This paper presents a novel computational model to detect airports in optical remote sensing images (RSI). It works in a hierarchical architecture with a coarse layer and a fine layer. At the coarse layer, a target-oriented saliency model is built by combing the cues of contrast and line density to rapidly localize the airport candidate areas. Furthermore, at the fine layer, a learned condition random field (CRF) model is applied to each candidate area to perform the fine detection of the airport target. The CRF model is learned based on sparse features of local patches in a multi-scale structure and it also takes the contextual information of target into consideration. Therefore, its detection is more accurate and is robust to target scale variation. Comprehensive evaluations on RSI database from the Google Earth and comparisons with state-of-the-art approaches demonstrate the effectiveness of the proposed model.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,