Article ID Journal Published Year Pages File Type
406453 Neurocomputing 2014 6 Pages PDF
Abstract

Unreliable extrapolation of data-driven models hinders their applicability not only in safety-related domains. The paper discusses how model interpretability and uncertainty estimates can address this problem. A new semi-parametric approach is proposed for providing an interpretable model with improved accuracy by combining a symbolic regression model with a residual Gaussian Process. While the learned symbolic model is highly interpretable the residual model usually is not. However, by limiting the output of the residual model to a defined range a worst-case guarantee can be given in the sense that the maximal deviation from the symbolic model is always below a defined limit. The limitation of the residual model can include the uncertainty estimate of the Gaussian Process, thus giving the residual model more impact in high-confidence regions. When ranking the accuracy and interpretability of several different approaches on the SARCOS data benchmark the proposed combination yields the best result.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,