Article ID Journal Published Year Pages File Type
406550 Neurocomputing 2014 12 Pages PDF
Abstract

Analyzing microarray data represents a computational challenge due to the characteristics of these data. Clustering techniques are widely applied to create groups of genes that exhibit a similar behavior under the conditions tested. Biclustering emerges as an improvement of classical clustering since it relaxes the constraints for grouping genes to be evaluated only under a subset of the conditions and not under all of them. However, this technique is not appropriate for the analysis of longitudinal experiments in which the genes are evaluated under certain conditions at several time points. We present the TriGen algorithm, a genetic algorithm that finds triclusters of gene expression that take into account the experimental conditions and the time points simultaneously. We have used TriGen to mine datasets related to synthetic data, yeast (Saccharomyces cerevisiae) cell cycle and human inflammation and host response to injury experiments. TriGen has proved to be capable of extracting groups of genes with similar patterns in subsets of conditions and times, and these groups have shown to be related in terms of their functional annotations extracted from the Gene Ontology.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,