Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
406836 | Neurocomputing | 2013 | 6 Pages |
This paper introduces a two-stage strategy for multi-class classification problems. The proposed technique is an advancement of tradition binary decomposition method. In the first stage, the classifiers are trained for each class versus the remaining classes. A modified fitness value is used to select good discriminators for the imbalanced data. In the second stage, the classifiers are integrated and treated as a single chromosome that can classify any of the classes from the dataset. A population of such classifier-chromosomes is created from good classifiers (for individual classes) of the first phase. This population is evolved further, with a fitness that combines accuracy and conflicts. The proposed method encourages the classifier combination with good discrimination among all classes and less conflicts. The two-stage learning has been tested on several benchmark datasets and results are found encouraging.