Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
407068 | Neurocomputing | 2013 | 12 Pages |
Ore grade estimation is one of the key stages and the most complicated aspects in mining. Its complexity originates from scientific uncertainty. In this paper, a novel hybrid SLPSO–SVR model that hybridized the self-adaptive learning based particle swarm optimization (SLPSO) and support vector regression (SVR) is proposed for ore grade estimation. This hybrid SLPSO–SVR model searches for SVR's optimal parameters using self-adaptive learning based particle swarm optimization algorithms, and then adopts the optimal parameters to construct the SVR models. The SVR uses the ‘Max-Margin’ idea to search for an optimum hyperplane, and adopts the ε-insensitive loss function for minimizing the training error between the training data and identified function. The hybrid SLPSO–SVR grade estimation method has been tested on a number of real ore deposits. The result shows that method has advantages of rapid training, generality and accuracy grade estimation approach. It can provide with a very fast and robust alternative to the existing time-consuming methodologies for ore grade estimation.