Article ID Journal Published Year Pages File Type
407177 Neurocomputing 2016 9 Pages PDF
Abstract

This paper is concerned with stochastic stability of a class of nonlinear discrete-time Markovian jump systems with interval time-varying delay and partially unknown transition probabilities. A new weighted summation inequality is first derived. We then employ the newly derived inequality to establish delay-dependent conditions which guarantee the stochastic stability of the system. These conditions are derived in terms of tractable matrix inequalities which can be computationally solved by various convex optimized algorithms. Numerical examples are provided to illustrate the effectiveness of the obtained results.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,