Article ID Journal Published Year Pages File Type
407270 Neurocomputing 2016 10 Pages PDF
Abstract

This paper presents a generalized incremental Laplacian Eigenmaps (GENILE), a novel online version of the Laplacian Eigenmaps, one of the most popular manifold-based dimensionality reduction techniques which solves the generalized eigenvalue problem. We evaluate the comparative performance of the manifold-based learning techniques using both artificial and real data. Specifically, two popular artificial datasets: swiss roll and s-curve datasets, are used, in addition to real MNIST digits, bank-note and heart disease datasets for testing and evaluating our novel method benchmarked against a number of standard batch-based and other manifold-based learning techniques. Preliminary experimental results demonstrate consistent improvements in the classification accuracy of the proposed method in comparison with other techniques.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,