Article ID Journal Published Year Pages File Type
407602 Neurocomputing 2013 9 Pages PDF
Abstract

Semi-supervised classification has become an active topic recently and a number of algorithms, such as Self-training, have been proposed to improve the performance of supervised classification using unlabeled data. In this paper, we propose a semi-supervised learning framework which combines clustering and classification. Our motivation is that clustering analysis is a powerful knowledge-discovery tool and it may reveal the underlying data space structure from unlabeled data. In our framework, semi-supervised clustering is integrated into Self-training classification to help train a better classifier. In particular, the semi-supervised fuzzy c-means algorithm and support vector machines are used for clustering and classification, respectively. Experimental results on artificial and real datasets demonstrate the advantages of the proposed framework.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,