Article ID Journal Published Year Pages File Type
407788 Neurocomputing 2013 10 Pages PDF
Abstract

In this work, we analyze video data by learning both the spatial and temporal relationships among frames. For this purpose, the nonlinear dimensionality reduction algorithm, Laplacian Eigenmaps, is improved using a multiple kernel learning framework, and it is assumed that the data can be modeled by means of two different graphs: one considering the spatial information (i.e., the pixel intensity similarities) and the other one based on the frame temporal order. In addition, a formulation for automatic tuning of the required free parameters is stated, which is based on a tradeoff between the contribution of each information source (spatial and temporal). Moreover, we proposed a scheme to compute a common representation in a low-dimensional space for data lying in several manifolds, such as multiple videos of similar behaviors. The proposed algorithm is tested on real-world datasets, and the obtained results allow us to confirm visually the quality of the attained embedding. Accordingly, discussed approach is suitable for data representability when considering cyclic movements.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,