Article ID Journal Published Year Pages File Type
407956 Neurocomputing 2011 10 Pages PDF
Abstract

We introduce a technique to improve iterative kernel principal component analysis (KPCA) robust to outliers due to undesirable artifacts such as noises, alignment errors, or occlusion. The proposed iterative robust KPCA (rKPCA) links the iterative updating and robust estimation of principal directions. It inherits good properties from these two ideas for reducing the time complexity, space complexity, and the influence of these outliers on estimating the principal directions. In the asymptotic stability analysis, we also show that our iterative rKPCA converges to the weighted kernel principal kernel components from the batch rKPCA. Experimental results are presented to confirm that our iterative rKPCA achieves the robustness as well as time saving better than batch KPCA.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,