Article ID Journal Published Year Pages File Type
408394 Neurocomputing 2007 8 Pages PDF
Abstract

This paper presents the performance evaluation of the recently developed Growing and Pruning Radial Basis Function (GAP-RBF) algorithm for classification problems. Earlier GAP-RBF was evaluated only for function approximation problems. Improvements to GAP-RBF for enhancing its performance in both accuracy and speed are also described and the resulting algorithm is referred to as Fast GAP-RBF (FGAP-RBF). Performance comparison of FGAP-RBF algorithm with GAP-RBF and the Minimal Resource Allocation Network (MRAN) algorithm based on four benchmark classification problems, viz. Phoneme, Segment, Satimage and DNA are presented. The results indicate that FGAP-RBF produces higher classification accuracy with reduced computational complexity.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,