Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
408618 | Neurocomputing | 2007 | 5 Pages |
Abstract
It has been shown recently that the identification of mixed hidden independent auto-regressive processes (independent process analysis, IPA), under certain conditions, can be free from combinatorial explosion. The key is that IPA can be reduced (i) to independent subspace analysis and then, via a novel decomposition technique called Separation Theorem, (ii) to independent component analysis. Here, we introduce an iterative scheme and its neural network representation that takes advantage of the reduction method and can accomplish the IPA task. Computer simulation illustrates the working of the algorithm.
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
András Lőrincz, Zoltán Szabó,