Article ID Journal Published Year Pages File Type
408717 Neurocomputing 2006 6 Pages PDF
Abstract

Recent studies of the lamprey spinal cord have shown that hemisegmental preparations can display rhythmic activity in response to a constant input drive. This activity is believed to be generated by a network of recurrently connected excitatory interneurons. A recent study found and characterized self-sustaining rhythmic activity—locomotor bouts—after brief electrical stimulation of hemisegmental preparations. The mechanisms behind the bouts are still unclear. We have developed a computational model of the hemisegmental network. The model addresses the possible involvement of NMDA, AMPA, acetylcholine, and metabotropic glutamate receptors as well as axonal delays in locomotor bouts.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,