Article ID Journal Published Year Pages File Type
408914 Neurocomputing 2008 9 Pages PDF
Abstract

A 1-norm support vector machine stepwise (SVMS) algorithm is proposed for the hidden neurons selection of wavelet networks (WNs). In this new algorithm, the linear programming support vector machine (LPSVM) is employed to pre-select the hidden neurons, and then a stepwise selection algorithm based on ridge regression is introduced to select hidden neurons from the pre-selection. The main advantages of the new algorithm are that it can get rid of the influence of the ill conditioning of the matrix and deal with the problems that involve a great number of candidate neurons or a large size of samples. Four examples are provided to illustrate the efficiency of the new algorithm.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,