Article ID Journal Published Year Pages File Type
409034 Neurocomputing 2016 10 Pages PDF
Abstract

Bag of Words (BoW) model has been widely used in conventional object recognition tasks. Different from the existing methods, this paper proposed a method for object recognition based on Region of Interest (ROI) and Optimal Bag of Words model. It includes the following steps: (1) ROI extraction in combination with the Shi–Tomasi corner and Itti saliency map; (2) The SIFT feature descriptors are detected and described on images of interest; (3) A visual codebook is generated through utilizing the Gaussian mixture models, which relies on the clustering results of k-means++; (4) The similarities between each visual word and corresponding local feature are computed by posterior pseudo probabilities discriminative to construct a visual word soft histogram for image representation; (5) The Support vector machine (SVM) is used to perform image classification and recognition. The experiments are performed on the MSRC 21-class database. The results show that the proposed method can be more accurately recognize images.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,