Article ID Journal Published Year Pages File Type
409117 Neurocomputing 2008 5 Pages PDF
Abstract

The discriminative common vectors (DCV) algorithm is a recently addressed discriminant method, which shows better face recognition effects than some commonly used linear discriminant algorithms. The radial basis function (RBF) neural network is widely applied to the function approximation and pattern classification. One of the interesting research topics of RBF network is how to set appropriate hidden-layer units. Based on DCV, we design a new nonlinear feature extraction algorithm that is the kernel DCV (KDCV) algorithm and we employ the DCV generated by KDCV as the hidden-layer units of the RBF network. Then we present a novel face recognition approach that is the KDCV-RBF approach. Testing on a public large face database (AR database), the experimental results demonstrate that KDCV-RBF is an effective face recognition approach, which outperforms several representative recognition methods.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,