Article ID Journal Published Year Pages File Type
409168 Neurocomputing 2008 14 Pages PDF
Abstract

This paper presents a novel quadratic error-counting network for pattern classification. Two computational issues namely, the network learning issue and the classification error-counting issue have been addressed. Essentially, a linear series functional approximation to network structure and a smooth quadratic error-counting cost function were proposed to resolve these two computational issues within a single framework. Our analysis shows that the quadratic error-counting objective can be related to the least-squares-error objective by adjusting the class-specific normalization factors. The binary classification network is subsequently extended to cater for multicategory problems. An extensive empirical evaluation validates the usefulness of proposed method.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,