Article ID Journal Published Year Pages File Type
409222 Neurocomputing 2008 6 Pages PDF
Abstract

A novel optimum extreme learning machines (ELM) construction method was proposed. We define an extended covering matrix with smooth function, relax the objective and constraints to formulate a more general linear programming method for the minimum sphere set covering problem. We call this method linear programming minimum sphere set covering (LPMSSC). We also present a corresponding kernelized LPMSSC and extended LPMSSC with non-Euclidean L1 and L-infinity metric. We then propose to apply the LPMSSC method to ELM and propose a data dependent ELM (DDELM) algorithm. We can obtain compact ELM for pattern classification via LPMSSC. We investigate the performances of the proposed method through UCI benchmark data sets.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,