Article ID Journal Published Year Pages File Type
409418 Neurocomputing 2006 8 Pages PDF
Abstract

In this paper we propose the inversion of nonlinear distortions in order to improve the recognition rates of a speaker recognizer system. We study the effect of saturations on the test signals, trying to take into account real situations where the training material has been recorded in a controlled situation, but the testing signals present some mismatch with the input signal level (saturations). The experimental results for speaker recognition shows that a combination of several strategies can improve the recognition rates with saturated test sentences from 80% to 89.39%, while the results with clean speech (without saturation) is 87.76% for one microphone, and for speaker identification can reduce the minimum detection cost function with saturated test sentences from 6.42% to 4.15%, while the results with clean speech (without saturation) is 5.74% for one microphone and 7.02% for the other one.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,