Article ID Journal Published Year Pages File Type
409952 Neurocomputing 2012 10 Pages PDF
Abstract

This paper studies the decentralized kinematic control of multiple redundant manipulators for the cooperative task execution problem. The problem is formulated as a constrained quadratic programming problem and then a recurrent neural network with independent modules is proposed to solve the problem in a distributed manner. Each module in the neural network controls a single manipulator in real time without explicit communication with others and all the modules together collectively solve the common task. The global stability of the proposed neural network and the optimality of the neural solution are proven in theory. Application orientated simulations demonstrate the effectiveness of the proposed method.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,