Article ID Journal Published Year Pages File Type
410078 Neurocomputing 2012 11 Pages PDF
Abstract

In this paper, we propose a sequential learning algorithm for a neural network classifier based on human meta-cognitive learning principles. The network, referred to as Meta-cognitive Neural Network (McNN). McNN has two components, namely the cognitive component and the meta-cognitive component. A radial basis function network is the fundamental building block of the cognitive component. The meta-cognitive component controls the learning process in the cognitive component by deciding what-to-learn, when-to-learn and how-to-learn. When a sample is presented at the cognitive component of McNN, the meta-cognitive component chooses the best learning strategy for the sample using estimated class label, maximum hinge error, confidence of classifier and class-wise significance. Also sample overlapping conditions are considered in growth strategy for proper initialization of new hidden neurons. The performance of McNN classifier is evaluated using a set of benchmark classification problems from the UCI machine learning repository and two practical problems, viz., the acoustic emission for signal classification and a mammogram data set for cancer classification. The statistical comparison clearly indicates the superior performance of McNN over reported results in the literature.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,