Article ID Journal Published Year Pages File Type
410373 Neurocomputing 2010 8 Pages PDF
Abstract

It is difficult to establish a black-box model for sparse data, because not enough data can be applied for training. This paper presents a novel identification approach using multiple fuzzy neural networks. It focuses on structure and parameters uncertainty which have been widely explored in the literature. Firstly, the sparse data are used within a fixed time interval to generate model structure. Then kernel regression methods are used to generate training data, a stable updating algorithm is proposed to train the membership functions. To cope structure change, a hysteresis strategy is proposed to enable multiple fuzzy neural identifier switching with guaranteed performance. Both theoretic analysis and simulation example show the efficacy of the proposed method.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,