Article ID Journal Published Year Pages File Type
410460 Neurocomputing 2009 9 Pages PDF
Abstract

This paper studies the identification and model predictive control in nonlinear hidden state-space models. Nonlinearities are modelled with neural networks and system identification is done with variational Bayesian learning. In addition to the robustness of control, the stochastic approach allows for various control schemes, including combinations of direct and indirect controls, as well as using probabilistic inference for control. We study the noise-robustness, speed, and accuracy of three different control schemes as well as the effect of changing horizon lengths and initialisation methods using a simulated cart–pole system. The simulations indicate that the proposed method is able to find a representation of the system state that makes control easier especially under high noise.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,