Article ID Journal Published Year Pages File Type
410616 Neurocomputing 2009 8 Pages PDF
Abstract

The recognition of a person from his (or her) gait is a relatively new and promising research direction in biometrics since it is noninvasive and human friendly. Gait recognition, however, has the weakness that it is not reliable compared with other biometrics. To increase reliability, we applied a neural network ensemble with probabilistic fusion to the gait recognition problem. To improve recognition accuracy, we define belief as the posterior probability of the pattern and combine the component neural networks of the ensemble based on the belief. Experiments are performed with the NLPR and SOTON databases, and the effectiveness of the proposed method for gait recognition is demonstrated.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,