Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
410650 | Neurocomputing | 2009 | 8 Pages |
This paper presents an improved adaptive neuro-fuzzy inference system (ANFIS) for the application of time-series prediction. Because ANFIS is based on a feedforward network structure, it is limited to static problem and cannot effectively cope with dynamic properties such as the time-series data. To overcome this problem, an improved version of ANFIS is proposed by introducing self-feedback connections that model the temporal dependence. A batch type local search is suggested to train the proposed system. The effectiveness of the presented system is tested by using three benchmark time-series examples and comparison with the various models in time-series prediction is also shown. The results obtained from the simulation show an improved performance.