Article ID Journal Published Year Pages File Type
410930 Neurocomputing 2006 5 Pages PDF
Abstract

In this paper, a novel full structure optimization algorithm for radial basis probabilistic neural networks (RBPNN) is proposed. Firstly, a minimum volume covering hyperspheres (MVCH) algorithm is proposed to heuristically select the initial hidden layer centers of the RBPNN, and then the recursive orthogonal least square (ROLS) algorithm combined with the particle swarm optimization (PSO) algorithm is adopted to further optimize the initial structure of the RBPNN. Finally, the effectiveness and efficiency of our proposed algorithm are evaluated through a plant species identification task involving 50 plant species.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,