Article ID Journal Published Year Pages File Type
411006 Neurocomputing 2006 11 Pages PDF
Abstract

In this paper, a genetic tracker (GT) with neural network (NN) (GT-NN) is presented for single and multiple target tracking. The data association problem formulated as an N-dimensional assignment problem is solved using genetic algorithm. The incorporation of a NN into the GT is then proposed to increase its tracking performance. Performance evaluations of the GT, the GT-NN, the probabilistic data association filter, and the joint probabilistic data association filter are presented using simulation studies. Nine different tracking scenarios are considered for this evaluation. It has been observed that the estimation results of the GT-NN are better than those of the GT, the probabilistic data association filter, and the joint probabilistic data association filter.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,