Article ID Journal Published Year Pages File Type
411617 Neurocomputing 2016 12 Pages PDF
Abstract

With the demand of high dimensional data analysis, data representation (or feature learning) has attracted more and more attention and becomes a central problem in pattern recognition and data mining. Non-negative Matrix Factorization (NMF) which is a useful data representation method makes great contribution in finding the latent structure of the data and leading to a parts-based representation by decomposing the data matrix into a few bases and encodings with the non-negative constraint. Considering the learned encodings from a statistical view by modeling the data points via ridge regression and minimizing the variance of the parameter, A-Optimal Non-negative Projection (ANP) improves the performance of NMF. However, it neglects the intrinsic geometric structure of the data. We introduce Hessian regularization and propose a novel method called A-Optimal Non-negative Projection with Hessian regularization (AHNP) to address this problem. Therefore, AHNP not only leads to parts-based and precise representations but preserves the intrinsic geometrical structure of the obtained subspace. We demonstrate the effectiveness of this novel algorithm through a set of evaluations on real world applications.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,