Article ID Journal Published Year Pages File Type
411865 Neurocomputing 2015 12 Pages PDF
Abstract

Along with the proliferation of mobile devices and wireless signal coverage, indoor localization based on Wi-Fi gets great popularity. Fingerprint based method is the mainstream approach for Wi-Fi indoor localization, for it can achieve high localization performance as long as labeled data are sufficient. However, the number of labeled data is always limited due to the high cost of data acquisition. Nowadays, crowd sourcing becomes an effective approach to gather large number of data; meanwhile, most of them are unlabeled. Therefore, it is worth studying the use of unlabeled data to improve localization performance. To achieve this goal, a novel algorithm Semi-supervised Deep Extreme Learning Machine (SDELM) is proposed, which takes the advantages of semi-supervised learning, Deep Leaning (DL), and Extreme Learning Machine (ELM), so that the localization performance can be improved both in the feature extraction procedure and in the classifier. The experimental results in real indoor environments show that the proposed SDELM not only outperforms other compared methods but also reduces the calibration effort with the help of unlabeled data.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,