Article ID Journal Published Year Pages File Type
412941 Neurocomputing 2009 12 Pages PDF
Abstract

In this paper, we present an algorithm for cluster analysis that integrates aspects from cluster ensemble and multi-objective clustering. The algorithm is based on a Pareto-based multi-objective genetic algorithm, with a special crossover operator, which uses clustering validation measures as objective functions. The algorithm proposed can deal with data sets presenting different types of clusters, without the need of expertise in cluster analysis. Its result is a concise set of partitions representing alternative trade-offs among the objective functions. We compare the results obtained with our algorithm, in the context of gene expression data sets, to those achieved with multi-objective clustering with automatic K-determination (MOCK), the algorithm most closely related to ours.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,