Article ID Journal Published Year Pages File Type
412990 Neurocomputing 2009 14 Pages PDF
Abstract

This paper is concerned with the robust asymptotic stability analysis for uncertain genetic regulatory networks with both interval time-varying delays and stochastic noise. By using the stochastic analysis approach, employing some free-weighting matrices and introducing an appropriate type of Lyapunov functional which takes into account the ranges of delays, some new delay-range-dependent and rate-dependent stability criteria are established in terms of linear matrix inequalities (LMIs) to guarantee the delayed genetic regulatory networks to be robustly asymptotically stable in the mean square. As a result, the new criteria are applicable to both fast and slow time-varying delays. Five numerical examples are also used to demonstrate the usefulness of the main results and less conservativeness of the proposed method.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , , ,