Article ID Journal Published Year Pages File Type
412991 Neurocomputing 2009 11 Pages PDF
Abstract

In this paper, both off-line architecture optimization and on-line adaptation have been developed for a dynamic neural network (DNN) in nonlinear system identification. In the off-line architecture optimization, a new effective encoding scheme—Direct Matrix Mapping Encoding (DMME) method is proposed to represent the structure of neural network by establishing connection matrices. A series of GA operations are applied to the connection matrices to find the optimal number of neurons on each hidden layer and interconnection between two neighboring layers of DNN. The hybrid training is adopted to evolve the architecture, and to tune the weights and input delays of DNN by combining GA with the modified adaptation laws. The modified adaptation laws are subsequently used to tune the input time delays, weights and linear parameters in the optimized DNN-based model in on-line nonlinear system identification. The effectiveness of the architecture optimization and adaptation is extensively tested by means of two nonlinear system identification examples.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,