Article ID Journal Published Year Pages File Type
413082 Neurocomputing 2006 27 Pages PDF
Abstract

A locally regularized orthogonal least squares (LROLS) algorithm is proposed for constructing parsimonious or sparse regression models that generalize well. By associating each orthogonal weight in the regression model with an individual regularization parameter, the ability for the orthogonal least squares model selection to produce a very sparse model with good generalization performance is greatly enhanced. Furthermore, with the assistance of local regularization, when to terminate the model selection procedure becomes much clearer. A comparison with a state-of-the-art method for constructing sparse regression models, known as the relevance vector machine, is given. The proposed LROLS algorithm is shown to possess considerable computational advantages, including well conditioned solution and faster convergence speed.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,