Article ID Journal Published Year Pages File Type
413686 Robotics and Computer-Integrated Manufacturing 2011 6 Pages PDF
Abstract

This paper aims to integrate didactically some engineering concepts to understand and teach the screw-based methods applied to the kinematic modeling of robot manipulators, including a comparative analysis between these and the Denavit–Hartenberg-based methods. In robot analysis, kinematics is a fundamental concept to understand, since most robotic mechanisms are essentially designed for motion. The kinematic modeling of a robot manipulator describes the relationship between the links and joints that compose its kinematic chain. To do so, the most popular methods use the Denavit–Hartenberg convention or its variations, presented by several author and robot publications. This uses a minimal parameter representation of the kinematic chain, but has some limitations. The successive screw displacements method is an alternative representation to this classic approach. Although it uses a non-minimal parameter representation, this screw-based method has some advantages over Denavit–Hartenberg. Both methods are here presented and compared, concerning direct/inverse kinematics of manipulators. The differential kinematics is also discussed. Examples of kinematic modeling using both methods are presented in order to ease their comparison.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,