Article ID Journal Published Year Pages File Type
413705 Robotics and Computer-Integrated Manufacturing 2011 9 Pages PDF
Abstract

This paper discusses the application of neural adaptive control strategy to the problem of cutting force control in high speed end milling operations. The research is concerned with integrating adaptive control and a standard computer numerical controller (CNC) for optimizing a metal-cutting process. It is designed to adaptively maximize the feed rate subject to allowable cutting force on the tool, which is very beneficial for a time consuming complex shape machining. The purpose is to present a reliable, robust neural controller aimed at adaptively adjusting feed rate to prevent excessive tool wear, tool breakage and maintain a high chip removal rate. Numerous simulations and experiments are conducted to confirm the efficiency of this architecture.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,