Article ID Journal Published Year Pages File Type
413782 Robotics and Computer-Integrated Manufacturing 2012 19 Pages PDF
Abstract

In this paper, three simulated annealing based algorithms that exploit auxiliary knowledge in different ways are devised and employed to handle a manufacturing process planning problem for reconfigurable manufacturing. These algorithms are configured based on a generic combination of the simulated annealing technique with; (a) heuristic knowledge, and (b) metaknowledge. Capabilities of the implemented algorithms are tested and their performances compared against a basic simulated annealing algorithm. Computational and optimization performances of the implemented algorithms are investigated and analyzed for two problem sizes. Each problem size consists of five different forms of a manufacturing process planning problem. The five forms are differentiated by five alternative objective functions. Experimental results show that the implemented simulated annealing algorithms are able to converge to good solutions in reasonable time. A computational analysis indicates that significant improvements towards a better optimal solution can be gained by implementing simulated annealing based algorithms that are supported by auxiliary knowledge.

► We consider three simulated annealing algorithms with auxiliary knowledge for process planning.► The simulated annealing algorithms are compared against simulated basic annealing algorithm.► Experimental results show that simulated annealing algorithms are able to converge in short time.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,