Article ID Journal Published Year Pages File Type
413856 Robotics and Computer-Integrated Manufacturing 2007 11 Pages PDF
Abstract

Unlike the traditional robot calibration methods, which need external expensive calibration apparatus and elaborate setups to measure the 3D feature points in the reference frame, a vision-based self-calibration method for a serial robot manipulator, which only requires a ground-truth scale in the reference frame, is proposed in this paper. The proposed algorithm assumes that the camera is rigidly attached to the robot end-effector, which makes it possible to obtain the pose of the manipulator with the pose of the camera. By designing a manipulator movement trajectory, the camera poses can be estimated up to a scale factor at each configuration with the factorization method, where a nonlinear least-square algorithm is applied to improve its robustness. An efficient approach is proposed to estimate this scale factor. The great advantage of this self-calibration method is that only image sequences of a calibration object and a ground-truth length are needed, which makes the robot calibration procedure more autonomous in a dynamic manufacturing environment. Simulations and experimental studies on a PUMA 560 robot reveal the convenience and effectiveness of the proposed robot self-calibration approach.

Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,